
D-Painless: A Framework for Distributed
Portfolio SAT Solving

Mazigh Saoudi1[0009−0004−6074−9686], Souheib Baarir2,3, Julien Sopena2, and
Thibault Lejemble1[0000−0001−5902−6094]

1 EPITA Research Laboratory (LRE), France mazigh.saoudi@epita.fr
2 Computer Science Laboratory of Sorbonne University (LIP6), France

3 Université Paris Nanterre, France

Abstract. In the evolving landscape of SAT solving, leveraging parallel
computation has become increasingly significant. The portfolio strategy,
combined with clause sharing, has emerged as the leading approach for
both local and distributed parallelization on CPUs. Frameworks such
as Mallob exemplify the effectiveness of this strategy by providing a
straightforward method to deploy portfolio parallel solvers across various
computing environments. Similarly, the Painless framework specializes
in local parallelization, offering diverse strategies for task sharing and
parallel execution. This enables the adoption of complex hybrid local
parallelization techniques, including portfolio, divide-and-conquer, and
cube-and-conquer methods.
This paper presents D-Painless, a new extension of the Painless frame-
work to include the distributed portfolio strategy and clause sharing. Our
enhancement aims to broaden Painless’s functionality, enabling more ef-
fective and comprehensive distributed SAT solving methodologies.

Keywords: Parallel SAT solving, Distributed computing, Painless, Tool

1 Introduction
Currently, SAT formulas are essential for encoding complex problems across
various fields such as circuit verification [25], cryptography [30], automated
planning [35], and software verification [26]. The complexity of these encoded
problems ranges from simple to extremely challenging. One effective method for
solving hard instances is the use of parallelism.

According to the annual SAT competition [17], the Portfolio clause shar-
ing parallelization strategy has been the gold standard for parallel SAT solving
for several years. However, many SAT formulae remain too difficult to solver.
As a result, exploiting distributed computing environments to reduce solving
times has become a crucial research focus, inspiring the development of several
software solutions and frameworks [36,5,15,23]. To the best of our knowledge, ex-
isting competitive solutions lack the flexibility in distributed sharing and solving
strategies that the Painless framework provides for (local) multi-core environ-
ments [28].

2 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

In this work, we extend the Painless framework to accommodate distributed
clause sharing SAT solvers. This extension, namely D-Painless, allows the incor-
poration of various clause-sharing strategies and node topologies, resulting in a
versatile framework that eases distributed SAT solvers development.

D-Painless is designed as a simple, generic, and extensible platform for par-
allel and distributed SAT solvers. Its primary goal is to empower researchers
to easily test and develop new sharing and parallelization strategies without
needing to master the complexities of distributed programming for SAT solving.
While it is not intended to outperform existing solvers, D-Painless serves as a
research tool capable of replicating their performance, while providing a ver-
satile environment for rapid prototyping and experimentation with innovative
strategies.

This paper is organized as follows: Section 2 introduces preliminary concepts,
followed by a review of related work in Section 3. Section 4 details the architec-
ture of Painless and its new extension, D-Painless. In Section 5, we assess the
new architecture with some implemented sharing strategies. Finally, we conclude
with a discussion of potential future works in Section 6.

2 Sequential, Parallel and Distributed SAT solving
The Conflict-Driven Clause Learning (CDCL) [38] algorithm has emerged as
the predominant method in SAT solving, consistently delivering superior perfor-
mance across a wide spectrum of SAT challenges. This algorithm has benefited
from various enhancements, encompassing sophisticated heuristics [33], advanced
pre-processing and in-processing strategies [11], and efficient data structures [31].

Parallelizing CDCL poses significant challenges. State-of-the-art methods pri-
marily involve running multiple instances of the algorithm concurrently. This is
typically achieved by altering initial variable assignments [24,19] or by diversify-
ing the heuristics and configurations within a portfolio of sequential solvers [22].
The portfolio approach when combined with clause-sharing mechanisms [22],
has proven to be the most effective for parallelizing CDCL solvers. Here, clauses
learned by one solver are shared with others, reducing redundant mistakes and
utilizing collective knowledge to speed up the solving process. According to the
recent work [37], clause sharing is the primary factor in the success of distributed
SAT solving, particularly when scaling to hundreds of solvers. While solver di-
versification remains beneficial, its impact becomes secondary compared to the
collaborative learning achieved through clause sharing.

In distributed computing, we handle multiple computational units (or nodes)
connected through a network. Implementing a distributed SAT solver based on
the portfolio approach requires strategic diversification of CDCL solvers across
nodes, ensuring effective clause sharing, both within nodes (intra-node) and be-
tween nodes (inter-node). It is crucial to mitigate communication latency and
address the challenges posed by the asynchronous nature of efficient distributed
systems, such as distinguishing between a node’s failure and its delayed response.
Challenges of Distributed SAT Solving: Scaling up a parallel SAT solver
to distributed systems presents two main challenges:

D-Painless: A Framework for Distributed Portfolio SAT Solving 3

– Technical limitations that increase the difficulty of certain aspects of devel-
opment, such as deployment, termination detection and fault management.

– Adapting parallelization and clause sharing to efficiently utilize all available
computing power.
Thus, developing distributed SAT solvers presents significant challenges that

could be addressed through specialized tools abstracting away technical com-
plexities. The key is creating a flexible, modular architecture that enables both
simplicity and extensibility. This modularity allows users to easily locate and
modify specific behaviors while containing feature logic within well-defined in-
terfaces.

3 Related Works
SAT solving can be parallelized using the divide-and-conquer strategy [19]. One
of the pioneering efforts in distributed SAT solving, PSATO [42] based on the
sequential solver SATO [43], adopts this strategy with a master-slave model for
communication and load-balancing. GridSAT [16] follows the same idea. In this
solver, a node (referred to as a “client” in the original paper) alerts the master
node to divide its search tree and assigns a portion to a new node when it encoun-
ters a problem that is too challenging or anticipates a memory overflow. This
new node, initiated by the master, receives a subset of the problem directly from
the initiating node, facilitating problem-solving in a distributed manner. Para-
cooba [23] advances this concept further by employing a Cube&Conquer [24]
strategy for distributed SAT solving, along with an adaptable load-balancing
mechanism. In Cube&Conquer, the problem is divided into thousands (or mil-
lions) of simpler sub-problems using look ahead [7, Chapter 5] techniques. Each
sub-problem represents a portion of the original problem where some decisions
have been pre-made, allowing CDCL solvers to focus on exploring specific parts
of the search space efficiently.

At the same time, other solvers have explored the portfolio approach [22],
a strategy also explored in other fields, such as in Software Verification [6]. For
instance, the annual SAT competitions [17] highlight Mallob [37] as a forefront
solution in modern distributed SAT solving. Mallob distinguishes itself through
an adaptable scheduling mechanism. It can schedule different types of jobs, such
as distributed portfolio instances of parallel SAT solvers. Thus, it is proficient
in handling multiple SAT problems concurrently, adaptively redistributing re-
sources based on the real-time difficulty assessment of each task. Mallob employs
a distributed clause sharing solver architecture, wherein each SAT problem (job)
is tackled by a coordinated group of nodes specifically allocated for it. The clause
sharing strategy is to gather the globally best clauses across all the solvers of a
given job.

Introduced at the 2023 SAT Competition [4], the PRS-Distributed frame-
work [15] aims to simplify the construction of local parallel and distributed SAT
solvers. It has demonstrated performance on par with the leading Mallob sys-
tem. The framework organizes computational nodes into distinct groups, each
configured with a specific solver setup. For clause sharing, the version presented
at the competition utilizes a circular ring architecture per group. Additionally,

4 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

the framework can broadcast clauses from any given node to all others within
its group using a tree-based structure.

The Parallel Instantiable SAT Solver, known as Painless [28], is a frame-
work designed for the instantiation of parallel SAT solvers in multi-core environ-
ments. Over the years, Painless has successfully integrated a variety of sequential
solvers, including Kissat [10], CaDiCaL [9], Lingeling [8], MapleCOMSPS [29],
GlucoseSyrup [2], and MiniSat [18]. It incorporates the two principal multi-
threaded parallel strategies: Portfolio [22] and Divide and Conquer [19]. The
adaptability and utility of Painless are attributed to its straightforward archi-
tecture (see Figure 1). This has enabled the implementation and execution of
diverse parallel solving strategies, making Painless a significant tool in parallel
SAT solving.

As depicted in Figure 1, the original architecture of Painless meticulously
outlines the interactions among the various components within a parallel SAT
solver, prioritizing simplicity, modularity, and flexibility. The behaviours related
to parallelization are encapsulated by a tree of WorkingStrategy implementa-
tions, with the SequentialWorker implementations at the leaves. These Sequen-
tialWorker instances interface with sequential solvers through the SolverInter-
face. This interface provides all necessary interactions for the SequentialWorker
to control the solving process, while the SharingStrategy facilitates clause shar-
ing among its producers and consumers. The Sharer represents the thread that
executes the chosen SharingStrategy . For an in-depth explanation, please refer
to [28].

Sharing

SharingStrategy

Inheritance

Instantiable ClassInterface

WorkingStrategy

Parallelization SequentialEngines

SolverInterface

SequentialWorker
1

1 N

N

11
Sharer

AggregationAssociation

Figure 1: The architecture of Painless

The architecture of Painless showed its effectiveness in instantiating parallel
SAT solvers via its results in the annual SAT Competitions [17]. The simplicity
and extensibility it offers permitted the construction of multiple solvers such
as those in works [39,40,41]. However, the current architecture lacks sufficient
abstractions and flexibility to permit efficient and straightforward instantiation
of distributed solvers with diverse clause-sharing strategies.

In the Mallob, Painless and PRS-Distributed solvers, the logic for clause
sharing is split between several entities in these solvers. For instance, filtering
clauses based on size or LBD [1] value was done within the sequential solvers
interaction interfaces’ export functions. To elevate this issue, we propose the new
framework D-Painless that fixes the actual shortcomings of Painless and extend
its functionalities to support distributed SAT solvers.

D-Painless: A Framework for Distributed Portfolio SAT Solving 5

Algorithm 1 The main Function
1: function main
2: timeout, ... ← parseParameters() ▷ global variables
3: finalResult ← UNKNOWN ▷ global variable
4: finalModel ← ∅ ▷ global variable
5: globalEnding ← false ▷ global variable
6: condGlobalEnd ← initializeCondVariable() ▷ global variable
7: mpiRank, worldSize ← initializeMpi() ▷ global variables
8: workingStrat ← new workingStrat()
9: workingStrat.solve() ▷ launches new threads

10: wakeUpState ← sleep(condGlobalEnd, timeout)
11: if wakeUpState = timedOut then
12: finalResult ← TIMEOUT
13: end if
14: workingStrat.finalize() ▷ destructor
15: finalizeMPI()
16: if finalResult = SAT then
17: print(finalModel)
18: end if ▷ If UNSAT it just returns the result
19: return finalResult
20: end function

4 The Architecture of D-Painless
D-Painless is a new framework that enables the creation of distributed port-
folios by instantiating and controlling sequential solvers across different nodes.
This framework facilitates communication for clause exchange both via shared
memory and message passing. In the following section, we will first discuss how
the new software architecture mitigates the technical complexities of distributed
systems. Then, we will explain how it simplifies the development of new sharing
strategies.

4.1 Distributed Deployment In D-Painless

In order to manage the multiple nodes and establish communication between
them, we use the Message Passing Interface (MPI). It proved its effective-
ness in state-of-the-art distributed SAT solvers such as Mallob [37] and PRS-
Distributed [32]. A big part of the deployment of the distributed environment
is managed by MPI , it mainly requires a hostfile identifying the different ma-
chines to be used. After the deployment, each node gets a unique identifier, the
mpiRank.

In D-Painless, we updated the main function of Painless to manage the MPI
initialization and finalization. This function is the one responsible for launching
the corresponding WorkingStrategy , waiting for its completion, and stopping it if
the timeout is reached. In order to ensure flexibility, we also reduced the number
of global variables, allowing the WorkingStrategy implementations to manage the
different instantiated components. Multiple working strategies can exist in par-
allel, each owning and managing its Sharers working with its SequentialWorkers.
This design simplifies resource management and enhances efficiency.

6 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

Algorithm 2 Termination detection in D-Painless
1: ▷ The function uses globalEnding, finalResult, mpiRank and worldSize from

main()
2: function DetectEnd
3: rankWinner ← 0
4: toSendResult ← UNKNOWN
5: if mpiRank ̸= 0 then
6: if globalEnding then
7: send finalResult to root
8: end if
9: else ▷ mpiRank = 0 i.e. it is the root

10: if globalEnding then
11: toSendResult ← finalResult
12: else
13: toSendResult ← checkReceivedResult() ▷ UNKNOWN if no message
14: end if
15: send toSendResult to everyone
16: end if

return (toSendResult ̸= UNKNOWN) ▷ returns true if it should end
17: end function

Because nodes may not have local access to the SAT problem file, we imple-
mented a formula-sharing mechanism within the mpiutils namespace. To han-
dle large problem instances that can reach several gigabytes, we compress the
numerical data using Zlib [21]. This mechanism is optional; the WorkingStrategy
implementation can choose to use or bypass these functions as needed.

Once the distributed solver finds a solution or a timeout is reached, all its
nodes must be notified. And, in a distributed setting, termination is not that
evident. Thus, to levitate this hurdle we have the new main function shown in
Algorithm 1 and the termination detection algorithm described in Algorithm 2.

Algorithm 1 begins by parsing the arguments to define the desired solver to
instantiate (line 2), followed by initializing essential variables for termination
management (lines 3-6). The thread executing this main function sleeps with a
timeout on the conditional variable condGlobalEnd (line 10) after launching a
WorkingStrategy . When a running thread finds the answer (SAT or UNSAT),
it sets globalEnding and notifies the main via condGlobalEnd and updates the
variables finalResult and finalModel. In case timeout is reached, the main wakes
up and sets finalResult accordingly. The MPI finalization (line 15) occurs after
the WorkingStrategy concludes (line 14), ensuring no messages are left unpro-
cessed. When main wakes up, it prints the model when required (lines 16-17)
and exits by returning the finalResult ’s value (SAT, UNSAT or TIMEOUT).

Algorithm 2 is a simple synchronization algorithm, that should be run peri-
odically. The node with mpiRank = 0 acts as the master node and is notified by
other nodes when they find a solution (line 7). This master node checks if it has
found a solution (lines 10-11) and if a worker node sent a termination notification
(line 13). Once the master knows whether a solution was found or not, it sends
a message to all other nodes (line 15) indicating whether they should continue

D-Painless: A Framework for Distributed Portfolio SAT Solving 7

or stop. If the function returns true, the component executing this algorithm
must wake up the node’s main function via (condGlobalEnd).

MPI offers a rich and high-level API for the development of distributed ap-
plications. However, developing a portfolio distributed SAT solver remains com-
plex, as it involves dealing with communication synchronization, data bufferiza-
tion, and multiple threads. Our framework’s architecture hides this complexity
by clearly separating the different needed behaviors in well-defined interfaces,
guiding the developer in using network communication only where needed. The
different aspects of the distributed solver can be changed independently. We
present the interfaces of our framework in Section 4.2 with some implementa-
tion examples of sharing strategies in Section 5.1.

4.2 Clause Sharing in D-Painless

Sharing

GlobalSharingStrategy

SharingEntity

InheritanceInstantiable ClassInterface Aggregation

Sharer
WorkingStrategy

Parallelization SequentialEngines

SolverInterface

SequentialWorker
1 SharingStrategy

ClauseDatabase

LocalSearchInterface

SolverCdclInterface

PreprocessorInterface

1 N

1

Figure 2: The new architecture of Painless

Clause sharing in distributed SAT solvers can be managed in two main ways:
using a single sharing strategy for both inter-node (global) and intra-node (local)
sharing, or employing separate strategies for each scope. We want our framework
to support both approaches, but the current architecture of Painless (Figure 1)
does not accommodate the latter, limiting its flexibility. For example, to enable
collaboration between global and local strategies, the global strategy must act
as both a producer and a consumer within the local strategy, requiring it to im-
plement the SolverInterface interface from Figure 1. This highlights a deficiency
in the current architecture’s ability to support more generic sharing strategies.

To address these limitations and support more flexible sharing mechanisms,
we propose the new architecture depicted in Figure 2. This revised structure
establishes a coherent hierarchy and interaction schema for both locally parallel
and distributed SAT solvers, enabling more robust clause sharing mechanisms.
A key advantage of this new architecture is its ability to mix inter-node and
intra-node strategies without the need to implement entirely new strategies that
handle both aspects. This modular approach allows for greater flexibility and
efficiency, as developers can combine existing strategies in various ways without
having to implement all possible combinations.

The proposed architecture introduces three new interfaces for sharing: Clause-
Database, GlobalSharingStrategy , and SharingEntity . Additionally, we have up-
dated the Sharer worker and the SharingStrategy interface. Furthermore, the

8 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

SolverInterface has been made more abstract by adding specialized interfaces:
SolverCdclInterface, LocalSearchInterface, and PreprocessorInterface.

SharingEntity SharingStrategy
Public Interface

+ importClause() + doSharing()
+ importClauses() + getSleepingTime()
+ addClient() + addProducer()
+ removeClient() + removeProducer()
+ getSharingId() + connectProducer()

Protected Interface
exportClause() # exportClauseToClient() (override)
exportClauses()
exportClauseToClient()

Protected Members
m_clients: list<SharingEntity*> # m_producers: list<SharingEntity*>

m_clauseDB: ClauseDatabase*
Table 1: Combined Abstract Interfaces for SharingEntity and SharingStrategy .
(+) Public method, (#) Protected method or member, (italics) Virtual method,
(override) redefinition of virtual methods.

In the new architecture, clause importing and exporting functionalities have
been transferred from SolverInterface to the new SharingEntity interface, which
is inherited by both SharingStrategy and SolverCdclInterface. The primary meth-
ods of SharingEntity , detailed in Table 1, offer flexibility for derived classes,
easing the implementation of customized clause filtering and storage strategies.

The SharingEntity maintains a dynamic list of clients (subscribers) to which
it exports clauses. This list can be safely updated at any time using the addClient
and removeClient methods, ensuring thread-safe operations in concurrent envi-
ronments. The export process is facilitated by two key methods: exportClause
for individual clauses and exportClauses for bulk exports. Both methods safely
access the current client list, preventing race conditions during clause export.

These methods transmit clauses to each client using the exportClauseToClient
function, which primarily calls the client’s public importClause method. This
adheres to a key design principle: the producer does not judge the usefulness
of a clause; instead, this responsibility is left to the consumer. By invoking the
client’s importClause method, we ensure that each client can implement its own
sharing logic and clause filtering.

As illustrated in Figure 2, both SharingStrategy and SolverCdclInterface
maintain dedicated ClauseDatabase instances to store imported clauses. Each
ClauseDatabase implementation applies specific storage policies that may dis-
card clauses based on memory constraints or other criteria, effectively adding a
second filtering layer after SharingStrategy ’s initial filter. The SharingStrategy
additionally maintains a list of producers from which it obtains clauses. Two key
methods manage producer interactions:
– addProducer : Initializes the necessary data structures for a new producer.

D-Painless: A Framework for Distributed Portfolio SAT Solving 9

– connectProducer : Adds the strategy as a client in the producer’s client list.
This two-step process ensures proper initialization order, mitigating potential

concurrency issues.
In this revised architecture, the Sharer invokes two essential methods defined

by the SharingStrategy : doSharing , which handles the periodic selection and ex-
port of clauses to the strategy’s clients, and getSleepingTime, which determines
the wait time for the executor between two consecutive sharing operations. Ad-
ditionally, the Sharer can now manage multiple SharingStrategy instances, in-
voking their doSharing methods in a round-robin fashion.

For inter-node sharing strategies, we introduced the specialized GlobalShar-
ingStrategy interface, which adds distributed initialization and finalization through
two additional methods: initMpiVariables and joinProcess. Its doSharing method
incorporates a termination-detection algorithm for the distributed solver, as de-
tailed in Algorithm 2. While implementations can use this algorithm, they are
free to develop custom approaches. Developers can also bypass the GlobalShar-
ingStrategy interface entirely and directly implement the new SharingStrategy
interface, enabling highly customized sharing strategies.

It is important to note that a sharing strategy may not always be necessary;
in some cases, simply connecting different solvers via the client list is enough,
eliminating the need for an additional thread to manage the sharing process.

These enhancements streamline the handling of challenging aspects in dis-
tributed environments, such as deployment and termination detection. The frame-
work’s simplicity and extensibility facilitate rapid development of new distributed
portfolio solvers, while its modular design enables researchers to conduct fair
comparisons of different heuristics by maintaining consistency across other solver
components.

5 Assessing The New Distributed D-Painless Framework
To demonstrate the scientific relevance of our framework, we present a study
of various parallelization and sharing strategies inspired by state-of-the-art dis-
tributed SAT solvers, namely Mallob [37] and PRS-Distributed [32]. Addition-
ally, we compare novel combinations of global and local sharing strategies that
have not been previously explored.

5.1 Implementations of GlobalSharingStrategy

We have developed three distributed sharing strategies for evaluating D-Painless:
GenericGlobalSharing , AllGatherSharing and MallobSharing . They all serialize
the clauses to be shared along with their Literal Block Distance (LBD) val-
ues [1]4, enabling the receiving node’s consumer to assess the usefulness of the
received clauses. However, the LBD value makes sense only locally to the solver
that produced the clause, sharing it may help, but it has not that much impor-
tance [37, Section 5.1]. The size of the serializing buffer is configurable, which is
crucial for controlling latency in inter-node communication.

4 The LBD value is a heuristic used to estimate the importance of a clause, for more
details you can refer to [1].

10 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

d e fb ca

k lg h i j

m n o p

d b eg h i j

g h d

c

m n e i o p

(a) Gathering of clause buffers to the root and
broadcasting it.

0000000 0000000 0000010

1000001 0000000

0001000

1001011

g h d m n e i

(b) Generation of the filter bit vec-
tor.

Figure 3: The two phases of MallobSharing strategy

GenericGlobalSharing implements a flexible approach to clause sharing among
distributed SAT solver instances. It utilizes user-defined subscription and sub-
scriber lists to establish communication patterns between nodes, allowing for
customizable topologies including ring structures. The strategy employs non-
blocking sends (MPI_Isend) to distribute clauses to subscribers and waits for
incoming clauses by probing (MPI_Probe), using dynamic receive buffers to ef-
ficiently collect clauses from subscriptions. To optimize sharing, the implemen-
tation incorporates two Bloom filters [12]: one to prevent resending previously
shared clauses, and another to avoid deserializing duplicate received clauses. We
judged receiving duplicates of locally produced clauses from a subscription not
harmful to the local solvers.

AllGatherSharing implements a straightforward strategy in which, during each
round, every node broadcasts its clauses to all other nodes (as in [5]. The MPI_-
Allgather function serves as a synchronization point for all n participating
nodes in the distributed system. To expedite the sharing process, we use a uni-
form static buffer size s across all nodes, padding with zeros if necessary, instead
of pre-sending buffer sizes using MPI_Allgatherv. After collecting all buffers, we
merge them into a single unified buffer, ensuring that each node ends the shar-
ing round with an identical buffer of size n × s. A Bloom filter is employed to
prevent redundant serialization and deserialization of clauses that have already
been transmitted [5]. Upon deserialization, the clauses are immediately exported
to the strategy’s clients.

MallobSharing strategy uses a binary tree topology for message passing, in-
spired by the sharing phase in Mallob [37]. Each sharing round consists of two
phases: clause merge and clause filtering. Communication is handled using MPI_-
Send, MPI_Probe, and MPI_Recv. The importClause method filters clauses based
on their size and LBD values against predefined maxSize and maxLBD before
storing them in the ClauseDatabase.

In the first phase (see Figure 3a), nodes merge clause buffers received from
their children with their own. Clauses are ordered by size, using LBD for tie-
breaking, allowing an ordered merge to select the best clauses. The buffer size

D-Painless: A Framework for Distributed Portfolio SAT Solving 11

l(u) at each node is limited, except for clauses smaller than freeSize, which are
not counted when serialized to the buffer [37]:

l(u) = β∞ − (β∞ − β0) · e
β0

β0−β∞ ·(u−1)

where β∞ is the maximum buffer size, β0 is the minimum buffer size, and u is
the number of merged buffers so far. Each node passes its value of u to its parent
via the clause buffer.

The root node’s merged buffer contains the best clauses of the sharing round.
This buffer is then broadcast to all nodes via the binary tree, with each node
sending the buffer to its children.

In the second phase (see Figure 3b), each node generates a bit vector indi-
cating which clauses were self-produced and shared in the previous z rounds.
A custom distributed exact filter [37] detects duplicates, allowing clauses to be
reshared after sufficient time. The bit vectors are combined via an OR operation
up to the root and then broadcast to all nodes. Using the merged bit vector,
nodes determine which clauses to export to their local clients.

Although the filter phase can lead to some wasted buffer space, a compensa-
tion mechanism dynamically adjusts the buffer size in future sharing rounds to
mitigate this issue [37].

The first strategy developed was AllGatherSharing , consisting of 192 lines
of code (LoC) in its .cpp file. The GenericGlobalSharing file contains 196 LoC,
while MallobSharing is larger at 728 LoC. Since initialization, serialization, and
deserialization processes are consistent across all strategies, both GenericGlobal-
Sharing and MallobSharing inherit approximately 80 LoC from AllGatherShar-
ing . The exact filter methods, adding another 83 LoC, are now integrated into
the MallobSharing class, as there is currently no separate filter interface.

5.2 Portfolio implementations of WorkingStrategy

To evaluate distributed portfolio solvers, we require implementations of: Solver-
Interface to solve formulas, WorkingStrategy to enforce the portfolio strategy,
and ClauseDatabase for clause management.

D-Painless offers multiple SolverInterface implementations, including Cadi-
calSolver [9], KissatSolver [10], KissatMABSolver [34], KissatINCSolver [13],
LingelingSolver [8], MapleCOMSPSSolver [29], MiniSatSolver [18], and Glu-
coseSyrupSolver [3]. For ClauseDatabase, notable implementations include Clause-
DatabaseMallob, which respects a certain literal capacity and manages space for
better clauses [37]; ClauseDatabaseBufferPerEntity , designed to manage buffers
for individual entities without requiring a lock mechanism; and ClauseDatabasePer-
Size, which organizes clauses based on their size.

There is also an existing implementation of the intra-node sharing strategy
HordeSatSharing [5]. It filters produced clauses based on their LBD: it dynami-
cally adjusts the solver’s LBD threshold to maintain optimal sharing if a solver
shares too few or too many clauses.

We implement two portfolio strategies using the WorkingStrategy interface:
PortfolioSimple and PortfolioPRS . Both leverage the mpiRank variable to di-

12 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

versify solvers via unique globalIds. The SolverInterface manages a general ID
and type ID, enabling complete diversification.

PortfolioSimple offers a flexible, general-purpose implementation support-
ing both CDCL and local search solvers. It features local and global sharing
mechanisms, a mallob mode replicating the sharing strategy from [37], and easy
customization of solver types and strategies.

PortfolioPRS is a specialized portfolio based on PRS-Distributed [32]. It
executes pre-processing techniques such as Unit Propagation, Equivalent-literal
Substitution, and Resolution Checking [14] in a leader node. Then, it divides
all nodes into five groups: SAT, UNSAT, MAPLE, LGL, and DEFAULT. By
following the implementation of [32], the group sizes are calculated based on
the total number of nodes n, and are: ⌊n

8 ⌋, ⌊
n
4 ⌋, ⌊

n
8 ⌋, 1, n − 2 · ⌊n

8 ⌋ − ⌊n
4 ⌋ − 1,

respectively.

5.3 Evaluated Solvers

In Section 5.4 we evaluate different solvers, with different sharing strategies. The
first two solvers emulate state-of-the-art solvers, while the two last explore new
solvers implementing original sharing strategies.

PL-Mallob-kc: is an instantiation of PortfolioSimple that emulates the setup
of Mallob [37]. The solvers set includes Kissat (v3.1.1) and CaDiCaL (v1.9.1)5.
For the sharing strategy, all solvers act as both producers and clients of the
MallobSharing strategy. It is configured in concordance to the one used by Mallob
in the 2024 International SAT Competition:

β0 =
400 · solverCount
roundsPerSecond

,with roundsPerSecond = 2

The freeSize parameter is set to 1 for unlimited unit clause sharing, the maximum
clause size maxSize and LBD value maxLBD are both set to 60. Lastly, the
clause database ClauseDatabaseMallob is employed, as outlined in [37] with the
maximum size set to maxSize and the capacity defined as 10 ∗ β0. β∞ is set to
250000, while z is defined as 15 seconds, equivalent to 30 rounds. z represents
the number of rounds during which a clause is remembered as being shared. If a
clause is reshared after this period, it won’t be filtered as redundant. However,
following Mallob terminology, we used an option in seconds.

PL-HordeGeneric-PRS: is an instantiation of PortfolioPRS that emulates
PRS-Distributed [32]. The SAT and UNSAT groups use KissatINC (v1.0.3)
solvers configured for their respective instance types. The MAPLE group uses
MapleCOMSPS solvers, and the LGL group uses Lingeling (v1.0.0) solvers. Fi-
nally, the DEFAULT group uses KissatINC solvers with no specialization. For
the sharing strategy, PRS-Distributed requires sharing clauses from local solvers
to the next neighbour, exporting received clauses from the previous neighbour to
local solvers and to the next neighbour. Local solvers export clauses according to
5 The integration of Lingeling wasn’t used due to a bug on our side when sharing

clauses with other solvers (this has been fixed). However, it was used in PRS because
Lingeling solvers shared clauses only among themselves.

D-Painless: A Framework for Distributed Portfolio SAT Solving 13

KissatINC

ClauseDatabasePerSize

HordeSatSharing

GenericGlobalSharing

Shared Memory

MPI Messages

ClauseDatabaseBufferPerEntity

Figure 4: Ring topology of the DEFAULT group with 3 nodes in PortfolioPRS

the hordeSat strategy [5]. To emulate this behaviour, we use a HordeSatSharing
instance having all solvers as clients and producers, and an instance of Gener-
icGlobalSharing configured for in-group ring sharing as a client (See Figure 4).
To allow solvers receiving clauses from the previous neighbour, they subscribe
to the GenericGlobalSharing .

The GenericGlobalSharing sends clauses obtained from the solvers via the
HordeSatSharing strategy to the next neighbour and exports received clauses
from the previous neighbour to the solvers. To resend clauses received from the
previous neighbour to the next neighbour, the GenericGlobalSharing needs to
import clauses that it exports to its clients; thus, it adds itself to its list of
clients. Finally, following the implementation of PRS-Distributed, the Generic-
GlobalSharing strategy uses an unlimited buffer size and a single Sharer instance
executes both strategies.

PL-HordeMallob-kc: is an instantiation of PortfolioSimple with KissatSolver
and CadicalSolver solvers, all connected to HordeSatSharing . A MallobSharing
instance is used for inter-node sharing with the same parameters as PL-Mallob-
kc. It is solely connected to HordeSatSharing , and both of them run on different
threads.

PL-HordeAllgather-kc: is an instantiation of PortfolioSimple with Kissat-
Solver and CadicalSolver solvers, all connected to HordeSatSharing . The All-
GatherSharing is used for inter-node sharing, solely connected to HordeSatShar-
ing . The AllGatherSharing buffer size is set to 1500·solverCount and each sharing
strategy is executed by a separate Sharer thread.

The initial LBD value in HordeSatSharing is set to 2, with each producer
having an upper limit of 1500 literals per sharing round. HordeSatSharing uses
ClauseDatabaseBufferPerEntity for concurrency management, while each solver
uses ClauseDatabasePerSize to store the imported clauses.

5.4 Evaluation

To assess the stability and performance of our new architecture, we used the
400 instances from the SAT’2024 competition, each with a timeout limit of 500
seconds. The tests were conducted on nodes in the “paravance” cluster of the

14 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

Instance Solved PAR2 SAT UNSAT SMAPE-VBS (%)

VBS-prs 318 215.394 154 164 0
PRS-Distributed 304 254.615 143 161 13.718
PL-HordeGeneric-PRS 313 237.338 150 163 17.894

VBS-mallob-kc 311 218.365 151 160 0
Mallob-kc 309 230.978 149 160 8.069
PL-Mallob-kc 308 234.252 151 157 20.050

PL-HordeMallob-kc 307 244.905 153 154 -
PL-HordeAllgather-kc 306 247.948 151 155 -

Table 2: PAR2 and number of resolved instances on GRID5000. The winner
and best values in each category are shown in bold font.

Grid5000 infrastructure. Each node is equipped with two Intel Xeon E5-2630
v3 processors, featuring 8 physical cores each, and 128 GB of RAM, operating
under a Non-Uniform Memory Access (NUMA) architecture with each CPU
paired with 64 GB of RAM. All evaluations were done using 25 machines, thus
having 50 CPUs, totaling 400 cores. All tested solvers use OpenMPI [20], and
for each CPU an MPI process is instantiated.

To evaluate our emulations of Mallob6 and PRS-Distributed7, we ran the
versions they submitted to the 2024 SAT Competition. Mallob and PL-Mallob-
kc are configured as described earlier Section 5.3, please note that Mallob was
used in its mono mode, i.e. only one SAT problem is solved at a time. With
400 cores, the portfolios consist of multiple sequential solvers: 200 Kissat and
200 CaDiCaL. PRS-Distributed and PL-HordeGeneric-PRS both follow a group
distribution strategy (Section 5.2): 6 nodes with SAT-specialized KissatINC (48
cores), 12 nodes with UNSAT-specialized KissatINC (96 cores), 6 nodes with
MapleCOMSPS (48 cores), 1 node with Lingeling (8 cores), and 25 nodes with
general-purpose KissatINC (200 cores).

The version of D-Painless used to instantiate these solvers is available on
GitHub8. The results of the evaluation are presented in Table 2, with the top
row of the two first groups showing their relative Virtual Best Solver (VBS).

The solvers are compared using two metrics: the number of solved SAT prob-
lems and their PAR2 score. The PAR2 score penalizes unsolved instances by
counting them as 2 times the timeout value. While traditionally PAR2 was
calculated as a sum, in recent SAT competitions it is reported as an average
on the number of benchmark instances. Additionally, to quantify how closely a
solver’s S execution times Stime(i) approaches the ones of its relative VBS across
the n tested instances, we use the Symmetric Mean Absolute Percentage Error
(SMAPE) [27], defined as:

6
https://github.com/domschrei/mallob/tree/08898345effa904c87d82a73dbee339049467d61

7
https://github.com/shaowei-cai-group/PRS-sc24/tree/main/PRS-distributed-sc24

8
https://github.com/lip6/painless/releases/tag/v1.24.10

https://github.com/domschrei/mallob/tree/08898345effa904c87d82a73dbee339049467d61
https://github.com/shaowei-cai-group/PRS-sc24/tree/main/PRS-distributed-sc24
https://github.com/lip6/painless/releases/tag/v1.24.10

D-Painless: A Framework for Distributed Portfolio SAT Solving 15

0 100 200 300 400 500
PRS (seconds)

0

100

200

300

400

500
PL

-H
or

de
+G

en
er

ic-
PR

S
(s

ec
on

ds
)

(a) Comparison on SAT instances
between PRS-Distributed and PL-
HordeGeneric-PRS.

0 100 200 300 400 500
PRS (seconds)

0

100

200

300

400

500

PL
-H

or
de

+G
en

er
ic-

PR
S

(s
ec

on
ds

)

(b) Comparison on UNSAT instances
between PRS-Distributed and PL-
HordeGeneric-PRS.

0 100 200 300 400 500
Mallob-kc (seconds)

0

100

200

300

400

500

PL
M

al
lo

b-
kc

 (s
ec

on
ds

)

(c) Comparison on SAT instances be-
tween Mallob-kc and PL-Mallob-kc.

0 100 200 300 400 500
Mallob-kc (seconds)

0

100

200

300

400

500

PL
M

al
lo

b-
kc

 (s
ec

on
ds

)

(d) Comparison on UNSAT instances be-
tween Mallob-kc and PL-Mallob-kc.

Figure 5: Execution time comparisons of the emulations

SMAPE-VBS(S) =
100

n
∗

n∑
i=1

|Stime(i)−VBS time(i)| ∗ 2
Stime(i) +VBS time(i)

Table 2 tells us that the best overall solver is PL-HordeGeneric-PRS, which
solves the most instances. This is quite logical, since it uses three different
state-of-the-art solvers: Lingeling , CaDiCaL, and Kissat, each with different pre-
processing and in-processing techniques, enabling it to solve different types of
formulae. After it, Mallob-kc comes second. Even though it only uses Kissat and
CaDiCaL, it achieves excellent performance thanks to its clever clause sharing,
showing the importance of efficient clause sharing in solving SAT problems. PL-

16 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

0 100 200 300 400 500
PLMallob-kc (seconds)

0

100

200

300

400

500

PL
-H

or
de

+M
al

lo
b-

kc
 (s

ec
on

ds
)

(a) Comparison on UNSAT in-
stances between PL-Mallob-kc and
PL-HordeMallob-kc.

0 100 200 300 400 500
PLMallob-kc (seconds)

0

100

200

300

400

500

PL
-H

or
de

+A
llG

at
he

r-k
c

(s
ec

on
ds

)

(b) Comparison on UNSAT in-
stances between PL-Mallob-kc and
PL-HordeAllgather-kc.

Figure 6: Execution times on UNSAT instances comparison with PL-Mallob-kc

Mallob-kc comes very close to Mallob-kc, with a single instance difference in the
overall score, but the UNSAT column shows us that it struggles to match the per-
formance of Mallob-kc in UNSAT instances. The two solvers PL-HordeMallob-kc
and PL-HordeAllgather-kc perform worse than PL-Mallob-kc, likely due to their
more aggressive clause sharing. The PRS-Distributed solver performs the worst;
however, it was able to solve instances that were not solved by the best solver
PL-HordeGeneric-PRS, as shown by their relative VBS.

When comparing PRS-Distributed with our emulation (PL-HordeGeneric-
PRS), the scatter plots in Figure 5b show that our emulation solves nearly
the same UNSAT instances as PRS-Distributed, with improved performance on
SAT instances (Figure 5a). It is worth noting that even if PL-HordeGeneric-PRS
achieves better results than PRS-Distributed, its resolution times are a little bit
behind the best ones, as it is shown by the new metric SMAPE-VBS in Table 2.
They are still close in performance, and thus we can say that we were able to
emulate the PRS-Distributed solver successfully with a more complex software
architecture.

When comparing Mallob-kc to our emulation (PL-Mallob-kc), we observe
that our solver is a bit less efficient on UNSAT instances (Figure 5d). However, as
illustrated in Figure 5c, our solver resolves many SAT instances more efficiently.
The SMAPE-VBS values in Table 2 confirms the current shortcomings, since
the PL-Mallob-kc solver is quite far from its relative VBS. These observations
suggest that the current implementation may suffer from limited diversification
or sub-optimal clause sharing.

In PL-HordeMallob-kc and PL-HordeAllgather-kc, we implement more ag-
gressive clause sharing, utilizing the HordeSatSharing strategy for local shar-
ing and the MallobSharing or AllGatherSharing strategy for global sharing.
Although their PAR2 scores are higher than that of PL-Mallob-kc, Figure 6b

D-Painless: A Framework for Distributed Portfolio SAT Solving 17

and Figure 6a show that these configurations are able to solve some UNSAT
instances that PL-Mallob-kc could not. The increased average solving time is
likely a consequence of the aggressive clause sharing, which overloads the solvers
with excessive clauses, thereby slowing down unit propagation. However, PL-
HordeMallob-kc with its more balanced global sharing via MallobSharing allows
to achieve better overall performance.

In summary, these experiments demonstrate that the solvers instantiated
from the D-Painless framework can perform on par with state-of-the-art solvers.
Our results show that D-Painless can successfully emulate existing solvers using
different clause-sharing strategies with minimal performance loss. This highlights
the framework’s ability to offer the flexibility, modularity, and generality for
which it was designed. Ultimately, D-Painless simplifies the development of new
distributed portfolio SAT solvers, making it easier to experiment with novel
sharing strategies.

6 Conclusion
Taking advantage of massively parallel hardware is essential for addressing hard
SAT problems. Current tools offer excellent performance and scalability on dis-
tributed systems for portfolio strategies but lack flexibility in their inter-node
communication strategies. We propose a new extension for Painless, namely D-
Painless, enabling clause sharing in a distributed system. This extension makes
the framework capable of instantiating distributed portfolio solvers using various
clause-sharing strategies.

An initial assessment shows that the new D-Painless architecture allows for
the construction of distributed portfolios, offering performance close to that of
state-of-the-art distributed SAT solvers. The modular and flexible nature of this
new architecture simplifies experimenting with different sharing strategies.

The current architecture lacks a reliable mechanism to detect errors, making
it vulnerable to node failures. Thus, to improve robustness, we aim to refine
our strategies, introduce new ones like divide-and-conquer, and develop fault-
tolerant algorithms that simplify the management of distributed workflows. In
addition to this, we will work on optimizing the performance of the various
existing components to further enhance the overall efficiency of the system.

Acknowledgements
The experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER, and several Universities as well as other organizations9.

9 https://www.grid5000.fr.

https://www.grid5000.fr

18 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

References
1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.

In: IJCAI. vol. 9, pp. 399–404 (2009)
2. Audemard, G., Simon, L.: Glucose in the SAT 2014 competition. SAT COMPE-

TITION 2014 p. 31 (2014)
3. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers.

In: int. conf. on Theory and Applications of Satisfiability Testing. pp. 197–205.
Springer (2014)

4. Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceedings of SAT
Competition 2023: Solver, Benchmark and Proof Checker Descriptions. Depart-
ment of Computer Science Series of Publications B, Department of Computer Sci-
ence, University of Helsinki, Finland (2023)

5. Balyo, T., Sanders, P., Sinz, C.: Hordesat: A massively parallel portfolio SAT solver.
In: Proceedings of the 18th International Conference on Theory and Applications
of Satisfiability Testing (SAT). pp. 156–172. Springer (2015)

6. Beyer, D., Kanav, S., Richter, C.: Construction of verifier combinations based
on off-the-shelf verifiers. In: Johnsen, E.B., Wimmer, M. (eds.) Fundamental Ap-
proaches to Software Engineering. pp. 49–70. Springer International Publishing,
Cham (2022)

7. Biere, A., van Maaren, H.: Handbook of satisfiability: Second edition. IOS Press,
Amsterdam, NY (May 2021)

8. Biere, A.: Splatz, lingeling, plingeling, treengeling, yalsat entering the SAT com-
petition 2016. SAT COMPETITION 2016 p. 44 (2016)

9. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2017. In: Balyo, T., Heule, M., Järvisalo, M. (eds.) Proc. of SAT
Competition 2017 – Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2017-1, pp. 14–15. University of Helsinki
(2017)

10. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

11. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Handbook of
Satisfiability (2021)

12. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

13. Chen, Z., Zhang, X., Cai, S., Lu, P.: Cdcl solvers with improved local search coop-
eration and pre-processing. In: Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda,
M. (eds.) Proceedings of SAT Competition 2022: Solver and Benchmark Descrip-
tions. Department of Computer Science Series of Publications B, Department of
Computer Science, University of Helsinki, Finland (2022)

14. Chen, Z., Zhang, X., Cai, S., Lu, P.: Cdcl solvers with improved local search coop-
eration and pre-processing. In: SAT COMPETITION 2022 Proceedings. pp. 37,38
(2022)

15. Chen, Z., Zhang, X., Qian, Y., Cai, S.: Prs: A new parallel/distributed framework
for SAT. In: SAT COMPETITION 2023 Proceedings. pp. 39,40 (2023)

16. Chrabakh, W., Wolski, R.: Gridsat: A chaff-based distributed SAT solver for the
grid. ACM/IEEE SC 2003 Conference (SC’03) pp. 37–37 (2003)

17. Conference, S.: SAT competition website, https://satcompetition.github.io/

https://satcompetition.github.io/

D-Painless: A Framework for Distributed Portfolio SAT Solving 19

18. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the 6th Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT).
pp. 502–518. Springer (2003)

19. Frioux, L.L., Baarir, S., Sopena, J., Kordon, F.: Modular and efficient divide-and-
conquer SAT solver on top of the painless framework. In: International Conference
on Tools and Algorithms for Construction and Analysis of Systems (2019)

20. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting. pp. 97–104. Budapest, Hungary (2004)

21. Gailly, J.l., Adler, M.: zlib (1995), https://www.zlib.net/
22. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. Journal on

Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)
23. Heisinger, M., Fleury, M., Biere, A.: Distributed cube and conquer with paracooba.

In: SAT. Lecture Notes in Computer Science, vol. 12178, pp. 114–122. Springer
(2020)

24. Heule, M.J., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding cdcl
SAT solvers by lookaheads. In: Haifa Verification Conference. pp. 50–65. Springer
(2011)

25. Hu, K., Chu, Z.: An efficient circuit-based SAT solver and its application in logic
equivalence checking. Microelectronics Journal 142, 106005 (2023)

26. Kleine Büning, M., Balyo, T., Sinz, C.: Using dimspec for bounded and unbounded
software model checking. In: Ait-Ameur, Y., Qin, S. (eds.) Formal Methods and
Software Engineering. pp. 19–35. Springer International Publishing, Cham (2019)

27. Kreinovich, V., Nguyen, H.T., Ouncharoen, R.: How to estimate forecasting qual-
ity: A system-motivated derivation of symmetric mean absolute percentage error
(smape) and other similar characteristics (2014)

28. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Painless: a framework for parallel
SAT solving. In: Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing (SAT). pp. 233–250. Springer (2017)

29. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: Maplecomsps lrb vsids,
and maplecomsps chb vsids. In: Proceedings of SAT Competition 2017: Solver and
Benchmark Descriptions. pp. 20–21. Department of Computer Science, University
of Helsinki, Finland (2017)

30. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning 24, 165–203 (2000)

31. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC). pp. 530–535. ACM (2001)

32. Qian, Y., Chen, Z., Zhang, X., Cai, S.: Prs-distributed in the SAT competition
2024. In: Proceedings of SAT Competition 2024: Solver and Benchmark Descrip-
tions. Department of Computer Science Report Series B, Department of Computer
Science, University of Helsinki, Finland (2024)

33. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Ph.D. thesis, Theses
(School of Computing Science)/Simon Fraser University (2004)

34. Sami Cherif, M., Habet, D., Terrioux, C.: Un bandit manchot pour combiner CHB
et VSIDS. In: Actes des 16èmes Journées Francophones de Programmation par
Contraintes (JFPC). Nice, France (Jun 2021)

35. Schreiber, D.: Lilotane: A lifted SAT-based approach to hierarchical planning. J.
Artif. Int. Res. 70, 1117–1181 (may 2021)

https://www.zlib.net/

20 Mazigh Saoudi, Souheib Baarir, Julien Sopena, and Thibault Lejemble

36. Schreiber, D., Sanders, P.: Scalable SAT solving in the cloud. In: Li, C.M., Manyà,
F. (eds.) Theory and Applications of Satisfiability Testing – SAT 2021. pp. 518–
534. Springer International Publishing, Cham (2021)

37. Schreiber, D., Sanders, P.: MallobSat: Scalable SAT solving by clause sharing.
Journal of Artificial Intelligence Research (JAIR) (2024), presented at Pragmatics
of SAT (PoS) 2024

38. Silva, J.M., Sakallah, K.A.: Grasp-a new search algorithm for satisfiability. In:
Proceedings of International Conference on Computer Aided Design. pp. 220–227.
IEEE (1996)

39. Vallade, V., Baarir, S., Sopena, J.: New concurrent painless solvers based on kissat-
mab: P-kissat and p-kissat-str. In: SAT COMPETITION 2023 Proceedings. pp.
42,43 (2023)

40. Vallade, V., Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: On the usefulness
of clause strengthening in parallel SAT solving. In: Proceedings of the 12th NASA
Formal Methods Symposium (NFM). Springer (2020)

41. Vallade, V., Le Frioux, L., Oanea, R., Baarir, S., Sopena, J., Kordon, F., Nejati,
S., Ganesh, V.: New concurrent and distributed painless solvers: P-mcomsps, p-
mcomsps-com,p-mcomsps-mpi, and p-mcomsps-com-mpi. In: Proceedings of SAT
Competition 2021: Solver and Benchmark Descriptions. p. 40. Department of Com-
puter Science, University of Helsinki, Finland (2021)

42. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. Journal of Symbolic Computation
21(4), 543–560 (1996)

43. Zhang, H., Stickel, M.: Implementing the davis–putnam method. Journal of Auto-
mated Reasoning 24(1-2), 277–296 (2000)

	D-Painless: A Framework for Distributed Portfolio SAT Solving

