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Abstract

We propose a flexible method to extract a set of segments from a 3D point cloud that are relevant across several
scales and optimal in a planar sense. Since planar geometric primitives are ubiquitous, especially in man-made
scene, their accurate detection is crucial for an abstract representation of point-based 3D data.
In this paper, we introduce a new hierarchical graph representation in which each node represents a region at
a given scale. The proposed graph is initialized with multiple segmentations performed at different scales and
then reduced by collapsing groups of nodes. Each resulting group of nodes defines a meaningful segment and is
obtained through an optimization that balances number of extracted segments and accuracy with respect to the
input data in a planar sense. The output graph is a compact abstraction of the input cloud into multiple, possibly
overlapping, segments, each relevant at a certain scale. The edges of the graph connect nodes whose segments
overlap across different scales, thus allowing to represent both detailed and approximating parts of the scene.

1. Introduction

With the increase in accuracy and resolution of scanning
devices, captured point-based geometries become more and
more detailed and complex. This complexity includes lar-
gely varying sampling and features size in an object or a
scene. This variation in feature size raises the need of multi-
scale analysis methods that are able to characterize features
in a discrete range from thin details to coarse shapes. In this
context, we study the very challenging problem of extracting
shape abstractions with a focus on finding the most represen-
tative segments that characterize a point set in a planar sense.

Point-Based Shape Abstraction : A popular method abs-
tracting a point cloud by a set of simple geometric primitives
is the well-known RANSAC [SWK07]. While being fast and
robust, this approach explores the space of solutions in a
randomized way and therefore does not guarantee consistent
results across different runs. An alternative is the use of vo-
ting approaches as the 3D Hough Transform [RDvdHV07],
which accumulate votes in a discretized parameter space.
However, such methods generally have high memory requi-
rements, which makes them unsuitable for processing large
input point sets. A number of approaches significantly im-
prove primitive extraction with the detection and the rein-
forcement of structural information [LWC∗11, MMBM15].
This is unfortunately effective only in the presence of strong
regularities in the data. Overall, all these techniques have a
common drawback : the notion of scale is not explicit and
they only deal with primitives with size of the same order of
magnitude.

Multi-scale Analysis : Inspired by the scale-space theory
introduced in computer vision [Wit87], the multi-scale ana-
lysis has been applied to 3D data [PKG03, MGB∗12]. The
point set is convoluted by a smoothing operator of progressi-
vely increasing width. Strong variations in the result corres-
pond to steps in the relevant scales of analysis. While these
methods are efficient for local geometry processing, they are
intrinsically local and therefore lack a global or regional re-
gularization for a direct use in shape abstraction.

Hierarchical segmentation : A multi-scale abstraction
of a point cloud can be obtained by computing an over-
segmentation and incrementally merging groups of seg-
ments until obtaining a coarse, over-simplified representa-
tion [AP10, FLD18]. This process produces redundant se-
quence of intermediate segmentations and a learning pro-
cess can be used to detect the meaningful scales of abstrac-
tion [FLD18]. However, the generation of candidate segmen-
tations is based on greedy merge operations, which is likely
to miss intermediate representations that are meaningful in
the context of a global, multi-scale analysis.

There is no effective approach able to extract an optimal
set of segments that abstract parts of the input model poten-
tially defined at different scale. Our contribution is a new
multi-scale analysis framework optimizing the merging of
regions segmented at different scales and stored in a graph.
We end up with a set of segments, optimal in a planar sense
and possibly describing features of different scale, following
the procedure described in Section 2.
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Figure 1: Example of segmentations at multiple scales and the associated graph. Left : hierarchical graph representation of
segmentation at 20 scales, with arbitrary colors. Right : 4 segmentations from low (a) to high (d) scale.

2. Multi-scale Planar Region Extraction

The input of our algorithm is a set of unstructured points
{pi} ∈ IR3 with their normals ni that sample an unknown
surface embedded in 3D. Our first goal is to perform a sur-
face segmentation at multiple scales to obtain a hierarchical
representation of the point cloud. In order to extract the ini-
tial regions, we perform a region growing algorithm based
on a scale-space normal field (Section 2.1). The resulting
segmentations – one for each scale level considered – are
then expressed as a hierarchical graph encoding similarities
between segments at different scales (Section 2.2). Finally,
an optimization procedure extracts from the graph a reduced
set of meaningful segments that are optimal in a planar sense
(Section 2.3).

2.1. Segmentation at Multiple Scales

The first step aims at generating N segmentations of the
point cloud, each at a different scale, where segmentations
details increase as the scale decreases, from very thin to co-
arse features. We develop a segmentation process that is pa-
rametrized by a scale parameter t ∈ IR+. The segmentation
algorithm uses the surface normal vectors as local descrip-
tors, hence the need of a scale-space normal field.

Scale-space Normal Field We compute a scale-space nor-
mal field ηi using the Moving Least Square (MLS) para-
digm [GG07]. For each point pi and its neighbors, an al-
gebraic sphere is fitted and the point is projected onto the
0-isosurface of the sphere. This is iteratively repeated until
convergence and the scale-space normal ηi is equal to the
normalized gradient of the converged scalar field. Similarly
to the Growing Least Square method [MGB∗12], the neigh-
borhood of a point is determined by an euclidean ball cente-
red at that point of radius t which defines the scale parameter
of our pipeline.

By increasing the scale parameter t, the estimated normal
ηi become smoother as required by the scale-space frame-
work. However, since our primitive of interest is the plane,

we combine the previous MLS iterations with several re-
weighting steps [ÖGG09]. By doing so, sharp edges are pre-
served even at high scales.

Region Growing The segmentation is done by a non-
seeded deterministic region growing algorithm [RVDHV06]
where regions are propagated from one point pi to a neigh-
bor p j if the similarity between them is high enough. We
relate this similarity measure to the angle between the two
multi-scale normal vectors ηi and η j previously computed.
A threshold θ is set so that the region is expanded if the fol-
lowing criterion is respected :

1−ηi(t) ·η j(t)< θ (1)

Scale-space Sampling The theoretical continuous scale-
space is discretized in N scale values {t j} between two
bounds (tmin, tmax). The sampling is chosen logarithmic to
increase the precision at low scales because this is where va-
riation of normal ηi will be more pronounced. One important
property of this scale-space approach is that the scale para-
meter t (i.e the neighborhood size) is a distance so we can
relate these bounds to a reference length like the bounding
box diagonal length dref. Typical values are tmin = 10−4dref
and tmax = 10−1dref.

2.2. Hierarchical Graph Representation

The resulting segmentations generated individually at the
N scales {t j} are turned into a hierarchical graph represen-
tation. Each of the N segmentation gives rise to one level in
the graph and one regionR j

k is represented by one node. We
also store in each node the number of points |R j

k| presented
in the region. This attribute determines the importance of the
node and is proportional to the node size in Figure 1 and 2.

The connection between the nodes is done between two
consecutive scales level t j and t j+1. The similarity between
the two linked nodes can be expressed as a weight attribute
of the edge connecting them. In our case, the similarity is

c© JFIG 2018.



T. Lejemble, C. Mura, L. Barthe and N. Mellado / Article JFIG2018

Figure 2: Output of our approach. (a) Initial hierarchical graph representation recolored according to the grouping obtained
with the optimization. Each color denotes one planar region. (b) Reduced graph after optimization, where each node represents
the set of nodes of corresponding color in the initial grap. (c) One subset of the extracted regions from two views. (d) The other
subset of regions from the same views.

simply equal to the number of points that are commonly sha-
red by the two regionsR j

k andR j+1
l :

w j
k,l = ∑

pi

δ{
R j

k∩R
j+1
l

} (pi) (2)

where δ is the indicator function equal to 1 if pi is in the
intersection of the regions or 0 otherwise.

2.3. Optimization

The full hierarchy of segmentations contains pertinent
planar regions, possibly overlapping, at different scales, as
well as irrelevant regions. Therefore the graph must be fil-
tered so as to extract only a reduced set of these numerous
regions. This final phase can be expressed as a relabelling
problem. Given the set of all regions R = {R j

k}, the goal is
to assign to each region r ∈ R a label fr ∈ L from a finite set
of labels L. Each label fr corresponds to a candidate planar
model, obtained by fitting a plane to region r using Principal
Component Analysis (PCA). The regions that are assigned
the same label define a meaningful segment that abstracts a
part of the input model at a certain scale. For an appropriate
abstraction we expect that : (i) the resulting segments explain
the data in an accurate way, (ii) similar regions across scale
levels be assigned to the same label and (iii) few labels be
employed. These three conditions correspond to three dif-
ferent energy terms : data cost, multi-scale smoothness cost
and label cost, respectively. They can be combined into one
single energy that can be optimized efficiently [DOIB12] :

E( f )= ∑
r∈R

Dr( fr)+λs ∑
r1,r2∈R

Vr1,r2( fr1 , fr2)+λl ∑
L∈L

δ{L} ( f )

(3)

Data cost In order to obtain regions as planar as possible,
the data cost for assigning one region r ∈ R the label fr′ is
equal to the sum of squared distance from all of its data point
to the PCA plane that approximates region r′ :

Dr( fr′) = ∑
pi∈r

d(pi,r
′)2 (4)

where d is the orthogonal distance from pi to the plane fitted
to the region r′ using principal component analysis.

Multi-scale smoothness cost The smoothness cost pena-
lizes pairs of similar regions that are assigned to different
labels and connected in the graph. This term usually refers to
spatial smoothness by penalizing spatially close elements of
different labels. In our work, we ensure this constraint across
scale-space with the following multi-scale smoothness cost :

Vr1,r2( fr1 , fr2) =

{
0 if fr1 = fr2

1 otherwise
(5)

Label cost The third term of Equation 3 imposes a restric-
tion on the number of used labels with a fixed penalty for
each label fr that exists in the current relabelling. This pe-
nalty is inversely proportional to the number of points in
the region r. Therefore, the optimization process will signi-
ficantly reduce the number of final labels, i.e. the number of
segments explaining the data.

3. Results

We show the results on the example of an L-shaped house
in order to demonstrate the functioning of our planar regions
extraction introduced in Section 2. In this experiment, we
used as propagation threshold on scale-space normal vectors
θ = 0.005 (see Equation 1) and as weights to balance the
different energy terms λs = 0.01 and λl = 0.001 (see Equa-
tion 3).

Figure 1-right shows the results of the region growing pro-
cess where we can see 4 of the 20 segmentations performed
at different scales. Results go from over segmented to over
simplified segmentations, which forms an extensive set of
candidate regions suitable for shape abstraction. The asso-
ciated hierarchical graph is shown on the left of Figure 1
with the scale increasing from bottom to top. The node size
is proportional to the number of points contained in the re-
gion, and the edge weight is proportional to the number of
common points in the two linked regions (see Equation 2).
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The output of the optimization process is a relabelling
of all the initial regions of the hierarchy, with each label
corresponding to a group of initial regions that define an
output segment. Each of these segments describes one part
of the input model, meaningful at a certain scale. In our
example, the 569 regions of the segmentations of Figure 2(a)
are compacted into a new set of 15 segments, depicted in Fi-
gure 2(b). These segments can be intuitively visualized with
the planes of the labels they were assigned by the optimiza-
tion, as shown in Figure 2(c) and Figure 2(d). Note that the
layout of the graph in Figure 2(b) is arbitrary since each node
corresponds to a group of initial nodes of possibly different
scales ; thus, a node in the output graph can not be associa-
ted to a single scale value. We can observe in Figure 2(c)
and Figure 2(d) that some segments exist that include several
smaller ones ; this is the case e.g. for the large green segment
in Figure 2(d)-top, which overlaps with the two segments
shown respectively in cyan and magenta in Figure 2(c)-top.
All of these three segments are indeed to be considered mea-
ningful, though at different scales, as they describe the ove-
rall shape of the side of the house with two different inter-
pretations : a detailed one at low scale with the cyan and the
magenta segments ; a global one approximating both the roof
and the wall as a same entity with the dark green region.

The overall time execution from the beginning of the
scale-space normal field estimation to the end of the opti-
mization step is about 30 seconds for 5035 sample points
and 20 scales.

4. Conclusion and Future Work

We introduced a method to extract a set of segments that
abstract the parts of an input point cloud at different scales.
This results is obtained by using a graph representation of
multiple segmentations performed at different scales based
on a scale-space normal field. By grouping the nodes in the
graph through an optimal relabeling, we obtain potentially
overlapping segments corresponding to parts meaningful at
different scale and optimal in a planar sense. This flexible
shape abstraction framework can provide highly diversified
set of surface parts to improve high level analysis such as
semantic segmentation or structure detection.

Future Work Although our method does not require any
scale parameter, the scale-space normal comparison thre-
shold θ of Equation 1 remains tedious to set manually. We
will investigate an automatic way of region propagation, lin-
king for instance the angle between two such normal vec-
tors and the scale at which they have been estimated. Other
differential properties, such as curvatures information, can
also be added to this propagation criterion since they can be
obtained directly from the MLS approach we used. Further-
more, these additional data are a possible way to optimally
extract other kinds of geometric primitives. More complex
data representation like feature histograms can be associated
to each region in order to improve the optimization step. Fi-
nally, the execution time remains prohibitive for point clouds
composed of several hundreds of thousands of points. In this
case, the graph becomes too large to be processed using the
current optimization model, which is why an alternative op-
timization strategy should be investigated as well.
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